Selasa, 06 Maret 2012

tugas 1 Utilitas (Pengolahan Limbah Caar dengan Sistem Lumpur Aktif)


Teknologi pengolahan limbah cair yang paling sederhana adalah menggunakan sistem lumpur aktif. Secara prinsip, sistem ini memanfaatkan mikroorganisme untuk mengkonsumsi komponen-komponen limbah sebagai sumber makanan atau energi. Berdasarkan jenis mikroorganisme yang digunakan, proses ini dibagi menjadi dua jenis. Proses aerobik (memerlukan oksigen) dan proses anaerobik (tanpa oksigen). Perbedaan kedua proses ini akan dijelaskan secara terperinci di pembahasan khusus. Untuk pembahasan mengenai bioreaktor membran, sistem lumpur aktif mengacu pada proses aerobik.

Diagram alir proses mengenai sistem lumpur aktif diatas merupakan diagram proses yang disederhanakan. Unit-unit peralatan jauh lebih banyak dan kompleks. Air limbah yang mengandung polutan organik masuk kedalam bioreaktor. Didalam bioreaktor tumbuh mikroorganisme yang akan mengkonsumsi komponen organik tersebut. Komponen organik sebagian akan dioksidasi menjadi CO2 dan H2O dan sebagian lagi digunakan untuk reproduksi. Umumnya, pada SLA yang baik, mikroorgaisme membentuk flok sehingga ukurannya bisa mencapai 50-100 mikron. Karena wujud fisiknya secara visual mirip lumpur, maka mikroorganisme pada SLA sering disebut lumpur aktif.
Dari bioreaktor air limbah yang diolah dipisahkan dengan lumpur aktif yang berupa flok di bagian sedimentasi. Flok yang berat akan terendapkan dan air yang telah diolah bisa dipisahkan dengan metode gravitasi saja. Lumpur yang mengendap selanjutnya dikembalikan ke dalam bioreaktor.
Karena terus jumlah mikroorganisme didalam sistem akan terus bertambah. Maka untuk menjaga agar konsetrasinya tetap sama atau sesuai dengan desain, dilakukan pembuangan secara berkala atau kontinu dari bak sedimentasi. Lumpur aktif tersebut selanjutnya di deaktifasi kemudian di saring dan dikeringkan dalam bentuk padatan.


Lumpur Aktif (Activated Sludge)
Secara umum proses lumpur aktif adalah proses dengan metode aerobik baik secara kontinu maupun semikontinu yang digunakan pada pengolahan biologis limbah cair industri, di dalamnya mencakup oksidasi karbon dan nitrifikasi. Proses ini didasarkan pada aerasi air limbah dengan flokulasi pertumbuhan biologis, dan diikuti oleh pemisahan. Bagian dari tahap ini kemudian dibuang, dan sisanya dikembalikan ke sistem. Biasanya, pemisahan dari air limbah dilakukan dengan proses pengendapan. Proses lumpur aktif saat ini merupakan teknologi yang paling berkembang untuk pengolahan air limbah. Pemanfaatan sistem lumpur aktif dapat diterapkan dalam kondisi iklim yang berbeda, dari daerah tropis hingga daerah kutub, dari permukaan laut (instalasi pengolahan air limbah di kapal) dan ketinggian yang ekstrim (pegunungan). Industri pengolahan Air Limbah yang dilengkapi dengan proses lumpur aktif mampu memenuhi kriteria limbah yang sesuai dengan baku mutu air limbah berdasarkan industrinya (Dohse and Heywood,1998).
Pada proses lumpur aktif mikroorganisme membentuk gumpalan-gumpalan koloni bakteri yang bergerak secara bebas tertahan di dalam air limbah. Mikroorganisme-mikroorganisme dapat keluar melalui aliran keluar air limbah sehingga densitas bakteri di dalam reaktor harus dikontrol. Pada proses dengan kecepatan tinggi dan waktu tinggal hidraulik pendek, pengembalian atau recycling bakteri merupakan cara yang paling banyak digunakan untuk mengontrol densitas bakteri di dalam reaktor (Siregar,2005).
Dohse dan Heywood (1998) kembali menjelaskan bahwa proses lumpur aktif adalah teknik pengolahan air limbah dimana di dalam air limbah dan lumpur biologis yang termanfaatkan kembali terdapat mikroorganisme yang tercampur dan teraerasikan. Lumpur biologis tersebut kemudian dipisahkan dari air limbah kemudian diolah di clarifier dan akan kembali ke proses aerasi atau dibuang. Mikroorganisme dicampur secara merata dengan bahan organik yang masuk sebagai makanan. Ketika mereka tumbuh dan bercampur dengan udara, masing-masing organisme akan berflokulasi. Setelah terflokulasikan, organisme tadi siap masuk ke clarifier sekunder untuk proses selanjutnya. Lumpur aktif akan terus berkembang dengan konstan sehingga dapat dikembalikan untuk digunakan pada proses aerasi. Volume lumpur yang kembali ke tahapan aerasi biasanya 40 hingga 60 persen dari aliran limbah, dan sisanya akan terbuang. Pertumbuhan mikroorganisme tetap berkembang pada media sintetik. Diagram alir proses lumpur aktif secara umum dapat dilihat pada Gambar 1.
Gambar 1. Diagram alir proses lumpur aktif (Dohse and Heywood,1998).

Proses lumpur aktif (activated sludge) pada pengolahan air limbah memiliki kelebihan dan kekurangan apabila diterapkan untuk penanganan dan pengolahan air limbah. Kelebihan yang dimiliki yaitu dapat dimanfaatkan pada penanganan dan pengolahan untuk skala kecil (Industri rumah) hingga untuk skala besar (Industri besar), dapat mengeliminasi bahan organik, dicapainya oksidasi dan nitrifikasi, proses nitrifikasi secara biologis tanpa menambahkan bahan kimia, eliminasi fosfor biologis, pemisahan padatan/cairan, stabilisasi lumpur, mampu mengurangi padatan tersuspensi sebesar 97%, dan proses lumpur aktif merupakan proses pengolahan air limbah yang paling banyak digunakan.
Kekurangan proses lumpur aktif yaitu tidak menghilangkan warna dari limbah industri dan dapat meningkatkan warna melalui oksidasi, tidak menghilangkan nutrient sehingga memerlukan penanganan tersier, daur ulang biomassa menyebabkan konsentrasi biomassa yang tinggi di dalam tanki aerasi sehingga diperlukan waktu tinggal yang tepat.
Proses lumpur aktif (Activated sludge) terdiri dari penyisihan BOD (Biological oxygen demand) , penyisihan nitrogen (Nitrifikasi dan denitrifikasi), dan penyisihan fosfor. BOD adalah banyaknya oksigen yang dibutuhkan oleh mikroorgasnisme untuk menguraikan bahan-bahan organik (zat pencerna) yang terdapat di dalam air buangan secara biologi. BOD dan COD digunakan untuk memonitoring kapasitas self purification badan air penerima.

Dalam literatur lain dijelaskan pula bahwa, Lumpur aktif (activated sludge) adalah proses pertumbuhan mikroba tersuspensi yang pertama kali dilakukan di Ingris pada awal abad 19. Sejak itu proses ini diadopsi seluruh dunia sebagai pengolah air limbah domestik sekunder secara biologi. Proses ini pada dasarnya merupakan pengolahan aerobik yang mengoksidasi material organik menjadi CO2 dan H2O, NH4. dan sel biomassa baru. Udara disalurkan melalui pompa blower (diffused) atau melalui aerasi mekanik. Sel mikroba membentuk flok yang akan mengendap di tangki penjernihan (Gariel Bitton, 1994).

Keberhasilan pengolahan limbah secara biologi dalam batas tertentu diatur oleh kemampuan bakteri untuk membentuk flok, dengan demikian akan memudahkan pemisahan partikel dan air limbah. Lumpur aktif adalah ekosistem yang komplek yang terdiri dari bakteri, protozoa, virus, dan organisme-organisme lain. Lumpur aktif dicirikan oleh beberapa parameter, antara lain, Indeks Volume Lumpur (Sludge Volume Index = SVI) dan Stirrd Sludge Volume Index (SSVI). Perbedaan antara dua indeks tersebut tergantung dari bentuk flok, yang diwakili oleh faktor bentuk (Shape Factor = S).


Proses lumpur aktif dalam pengolahan air limbah tergantung pada pembentukan flok lumpur aktif yang terbentuk oleh mikroorganisme (terutama bakteri), partikel inorganik, dan polimer exoselular. Selama pengendapan flok, material yang terdispersi, seperti sel bakteri dan flok kecil, menempel pada permukaan flok. Pembentukan flok lumpur aktif dan penjernihan dengan pengendapan flok akibat agregasi bakteri dan mekanisme adesi. Selanjutnya dinyatakan pula bahwa flokulasi dan sedimentasi flok tergantung pada hypobisitas internal dan eksternal dari flok dan material exopolimer dalam flok, dan tegangan permukaan larutan mempengaruhi hydropobisitas lumpur granular dari reaktor lumpur anaerobik.

Macam-Macam Sistem Lumpur Aktif

Ù  Sistem Lumpur Aktif Konvensional
Proses Lumpur Aktif Konvensional dapat dilihat pada Gambar 1 berikut :
Gambar 1. Sistem Lumpur Aktif Konvensional

Keterangan gambar 1.

1.           Tangki aerasi
Oksidasi aerobik material organik dilakukan dalam tangki ini. Efluent pertama masuk dan tercampur dengan Lumpur Aktif Balik (Return Activated Sludge =RAS) atau disingkat LAB membentuk lumpur campuran (mixed liqour), yang mengandung padatan tersuspensi sekitar 1.500 - 2.500 mg/l. Aerasi dilakukan secara mekanik. Karakteristik dari proses lumpur aktif adalah adanya daur ulang dari biomassa. Keadaan ini membuat waktu tinggal rata-rata sel (biomassa) menjadi lebih lama dibanding waktu tinggal hidrauliknya (Sterritt dan Lester, 1988). Keadaan tersebut membuat sejumlah besar mikroorganisme mengoksidasi senyawa organik dalam waktu yang singkat. Waktu tinggal dalam tangki aerasi berkisar 4 - 8 jam.

2.         Tangki Sedimentasi
Tangki ini digunakan untuk sedimentasi flok mikroba (lumpur) yang dihasilkan selama fase oksidasi dalam tangki aerasi. Seperti disebutkan diawal bahwa sebaghian dari lumpur dalam tangki penjernih didaur ulang kembali dalam bentuk LAB kedalam tangki aerasi dan sisanya dibuang untuk menjaga rasio yang tepat antara makanan dan mikroorganisme (F/M Ratio).

Ù  Modifikasi Proses Lumpur Aktif Konvensional
Terdapat beberapa modifikasi dari proses lumpur aktif konvensional

 Gambar 2. Modifikasi proses lumpur aktif.

A. Sistem aerasi lanjutan.

B. Parit oksidasi (US EPA, 1977, dalam Bitton, 1994)

Keterangan gambar 2.
1.        Sistem Aerasi Lanjutan
Proses ini dipakai dalam instalasi paket pengolahan dengan cara sebagai berikut :
1.       Waktu aerasi lebih lama (sekitar 30 jam) dibandingkan sistem konvensional. Usia lumpur juga lebih lama dan dapat diperpanjang sampai 15 hari.
2.       Limbah yang masuk dalam tangki aerasi tidak diolah dulu dalam pengendapan primer.
3.      Sistem beroperasi dalam F/M ratio yang lebih rendah (umumnya <0,1 lb BOD/hari/lb MLSS) dari sistem konvensional (0,2 - 0,5 lb BOD/hari/lb MLSS).
4.      Sistem ini membutuhkan membutuhkan sedikit aerasi dibandingkan dengan pengolahan konvensional dan terutama cocok untuk komunitas yang kecil yang menggunakan paket pengolahan.
2.      Selokan Oksidasi (Oxidation Ditch)
Selokan oksidasi terdiri dari saluran aerasi yang berbentuk oval yang dilengkapi dengan satu atau lebih rotor rotasi untuk aerasi limbah. Saluran ini menerima limbah yang telah disaring dan mempunyai waktu tinggal hidraulik (hidraulic retention time) mendekati 24 jam.

3.      Stabilisasi Kontak
Setelah limbah dan lumpur bercampur dalam tangki reaktor kecil untuk waktu yang singkat (20-40 menit), aliran campuran tersebut dialirkan ke tangki penjernih dan lumpur dikembalikan ke tangki stabilisasi dengan waktu tinggal 4 - 8 jam. Sistem ini menghasilkan sedikit lumpur.

3.      Sistem Aerasi Campuran
Pada sistem ini limbah hanya diaerasi dalam tangki aerasi secara merata. Sistem ini dapat menahan shock load dan racun.

4.      Lumpur Aktif Kecepatan Tinggi
Sistem ini digunakan untuk mengolah limbah konsentrasi tinggi dan dioperasikan untuk beban BOD yang sangat tinggi dibandingkan proses lumpur aktif konvensional. Proses ini mempunyai waktu tinggal hidraulik sangat singkat. Sistem ini beroperasi pada konsentrasi MLSS yang tinggi.

5.      Aerasi Oksigen Murni
Sistem aerasi dengan oksigen murni didasarkan pada prinsip bahwa laju tranfer oksigen lebih tinggi pada oksigen murni dari pada oksigen atmosfir. Proses ini menghasilkan kemampuan oksigen terlarut menjadi lebih tinggi, sehingga meningkatkan efisiensi pengolahan dan mengurangi produksi lumpur.

Deskripsi Proses
Proses pengolahan air limbah terbagi atas tiga tahap pemrosesan, yaitu :
  1. Proses primer yang meliputi :
a)     Penyaringan kasar : air limbah disaring dengan menggunakan saringan kasar berdiameter 50 mm dan 20 mm.
b)     Penghilangan warna : Limbah cair berwarna setelah melewati tahap penyaringan, ditampung dalam dua bak penampungan kemudian dipompakan ke dalam tangki koagulasi pertama yang terdiri atas tiga buah tangki, yaitu : Pada tangki pertama ditambahkan koagulasi FeSO4 (Fero Sulfat) konsentrasinya 600 - 700 ppm untuk pengikatan warna. Selanjutnya dimasukkan ke dalam tangki kedua dengan ditambahkan kapur (lime) konsentrasinya 150 - 300 ppm, gunanya untuk menaikkan pH yang turun setelah penambahan FeSO4. Dari tangki kedua limbah dimasukkan ke dalam tangki ketiga pada kedua tangki tersebut ditambahkan polimer berkonsentrasi 0,5 - 0,2 ppm, sehingga akan terbentuk gumpalan-gumpalan besar (flok) dan mempercepat proses pengendapan.
Setelah gumpalan-gumpalan terbentuk, akan terjadi pemisahan antara padatan hasil pengikatan warna dengan cairan secara gravitasi dalam tangki sedimentasi. Meskipun air hasil proses penghilangan warna ini sudah jernih, tetapi pH-nya masih tinggi yaitu 10, sehingga tidak bisa langsung dibuang ke perairan. Untuk menghilangkan unsur-unsur yang masih terkandung didalamnya, air yang berasal dri koagulasi I diproses dengan sistem lumpur aktif. Cara tersebut merupakan perkembangan baru yang dinilai lebih efektif dibandingkan cara lama yaitu air yang berasal dari koagulasi I digabung dalam bak ekualisasi.
c)      Ekualisasi : Bak ekualisasi atau disebut juga bak air umum  menampung dua sumber pembuangan yaitu limbah cair tidak berwarna dan air yang berasal dari mesin pengepres lumpur. Kedua sumber pembuangan pengeluarkan air dengan karakteristik yang berbeda. Oleh karena itu untuk memperlancar proses selanjutnya air dari kedua sumber ini diaduk dengan menggunakan blower hingga mempunyai karakteristik yang sama yaitu pH 7 dan suhunya 32oC. Sebelum kontak dengan sistem lumpur aktif, terlebih dahulu air melewati saringan halus dan cooling tower, karena untuk proses aerasi memerlukan suhu 32oC. Untuk mengalirkan air dari bak ekualisasi ke bak aerasi digunakan dua buah submerble pump atau pompa celup (Q= 60 m3/jam).
d)     Penyaringan halus : Air hasil ekualisasi dipompakan menuju saringan halus untuk memisahkan padatan dan larutan, sehingga air limbah yang akan diolah bebas dari padatan kasar berupa sisa-sisa serat benang yang masih terbawa.
e)      Pendinginan :  Karakteristik limbah produksi tekstil umumnya mempunyai suhu antara 35-40oC, sehingga memerlukan pendinginan untuk menurunkan suhu yang bertujuan mengoptimalkan kerja bakteri dalam sistem lumpur aktif. Karena suhu yang diinginkan adalah berkisar 29-30oC.
  1. Proses sekunder yang meliputi proses biologi dan sedimentasi.
Biasanya terdapat tiga bak aerasi dengan sistem lumpur aktif, yang pertama berbentuk oval mempunyai beberapa kelebihan dibandingkan dengan bentuk persegi panjang. Karena pada bak oval tidak memerlukan blower sehingga dapat menghemat biaya listrik, selain itu perputaran air lebih sempurna dan waktu kontak bakteri dengan limbah lebih merata serta tidak terjadi pengendapan lumpur seperti layaknya terjadi pada bak persegi panjang. Kapatas dari ketiga bak aerasi adalah 2175 m3. Pada masing-masing bak aerasi ini terdapat sparator yang mutlak diperlukan untuk memasok oksigen ke dalam air bagi kehidupan bakteri. Parameter yang diukur dalam bak aerasi dengan sistem lumpur aktif adalah DO, MLSS, dan suhu. Dari pengalaman yang telah dijalani, parameter-parameter tersebut dijaga sehingga penguraian polutan yang terdapat dalam limbah dapat diuraikan semaksimal mungkin oleh bakteri. Oksigen terlarut yang diperlukan berkisar 0,5 – 2,5 ppm, MLSS berkisar 4000 – 6000 mg/l, dan suhu berkisar 29 – 30oC.
Bak sedimentasi II  mempunyai bentuk bundar pada bagian atasnya dan bagian bawahnya berbentuk kronis yang dilengkapi dengan pengaduk (agitator) dengan putaran 2 rph. Desain ini dimaksudkan untuk mempermudah pengeluaran endapan dari dasar bak. Pada bak sedimentasi ini akan terjadi settling lumpur yang berasal dari bak aerasi dan endapan lumpur ini harus segera dikembalikan lagi ke bak aerasi (return sludge=RS), karena kondisi pada bak sedimentasi hampir mendekati anaerob. Besarnya RS ditentukan berdasarkan perbandingan nilai MLSS dan debit RS itu sendiri. Pada bak sedimentasi ini juga dilakukan pemantauan kaiment (ketinggian lumpur dari permukaan air) dan MLSS dengan menggunakan alat MLSS meter.
  1. Proses tersier yang merupakan tahap lanjutan dengan penambahan bahan kimia.
Pada proses pengolahan ini ditambah bahan kimia, yaitu Alumunium Sulfat (Al2(SO4)3), Polimer dan Antifoam (Silicon Base); untuk mengurangi padatan tersuspensi yang masih terdapat dalam air. Tahap lanjutan ini diperlukan untuk memperoleh kualitas air yang lebih baik sebelum air tersebut dibuang ke perairan. Air hasil proses biologi dan sedimentasi selanjutnya ditampung dalam bak interdiet yang dilengkapi dengan alat yang disebut inverter untuk mengukur level air, kemudian dipompakan ke dalam tangki koagulasi dengan menggunakan pompa sentrifugal. Pada tangki koagulasi ditambahkan alumunium sulfat (konsentrasi antara 150 – 300 ppm) dan polimer (konsentrasi antara 0,5 – 2 ppm), sehingga terbentuk flok yang mudah mengendap. Selain kedua bahan koagulan tersebut juga ditambahkan tanah yang berasal pengolahan air baku (water teratment) yang bertujuan menambah partikel padatan tersuspensi untuk memudahkan terbentuknya flok. Pada tangki koagulasi ini terdapat mixer (pengaduk) untuk mempercepat proses persenyawaan kimia antara air dan bahan koagulan, juga terdapat pH kontrol yang berfungsi untuk memantau pH effluent sebelum dikeluarkan ke perairan. Setelah penambahan koagulan dan proses flokulasi berjalan dengan sempurna, maka gumpalan-gumpalan yang berupa lumpur akan diendapkan pada tangki sedimentasi III. Hasil endapan kemudian dipompakan ke tangki penampungan lumpur yang selanjutnya akan diolah dengan belt press filter machine.

Melalui upaya pengelolaan yang telah dilakukan, maka air limbah yang dibuang tidak akan mencemari lingkungan. Biaya investasi pembangunan instalasi ini hanya sekitar 2% dari total investasi atau sekitar 2,5 milyard rupiah. Sistem pengolah limbah yang digunakan merupakan perpaduan antara proses fisika, kimia, dan biologi. Proses yang berperan dalam pengurangan bahan pencemar adalah proses biologi yang menggunakan sistem lumpur aktif dengan aerasi lanjutan (extended aeration).
Selain limbah cair terdapat pula limbah padat yang berupa lumpur, hasil samping dari sistem pengolahan yang digunakan. Lumpur hasil olahan digunakan sebagai bahan campuran pembuatan conblock dan batako press serta pupuk organik. Hal ini merupakan salah satu alternatif dan langkah lebih maju dari dalam memanfaatkan kembali limbah padat.

Analisa
ü  Kimia
1.    COD (Chemical Oxygen Demand) : Jumlah oksigen (ppm O2) yang dibutuhkan untuk mengoksidasi K2Cr2O7 yang digunakan sebagai sumber oksigen (oxidizing agent).
2.    BOD (Biochemical Oxygen Demand) : Suatu analisis empiris yang mencoba mendekati secara global proses-proses mikrobiologi yang benar-benar terjadi didalam air. Angka BOD adalah jumlah oksigen (ppm O2) yang dibutuhkan oleh bakteri untuk mengoksidasi hampir semua zat organis yang terlarut dan sebagian zat organis yang tersuspensi dalam limbah cair.
3.   DO (Dissolved Oksigen) : Jumlah oksigen (ppm O2) yang terlarut dalam air dan merupakan kebutuhan mutlak bagi mikroorganisma (khususnya bakteri) dalam menguraikan zat organik.
4.   pH (Derajat Keasaman) : Didefinisikan sebagai pH = - log (H+) yang menunjukkan tingkat keasaman atau kebasaan.
ü  Fisika
1.    MLSS (Mixed Liqour Suspended Solid) : Jumlah seluruh padatan tersuspensi dalam suatu cairan (ppm) yang menggambarkan kepekatan lumpur pada kolam aerasi khususnya.
2.    SV30 (Sludge Volume = 30) : Lumpur yang mengendap secara gravitasi selama 30 menit (%) yang menunjukkan tingkat kelarutan oksigen dalam lumpur aktif.

ü  Biologi
Parameter biologi yang diamati berupa mikroorganisme predator bakteri, diantaranya prozoa dan avertebrata lainnya.